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Abstract A theoretical formalism to calculate the single

crystal elastic constants for hexagonal crystals from first

principle calculations is described. The calculated values

compare favorably with recent experimental results. An

expression to calculate the bulk modulus along crystallo-

graphic axes of single crystals, using elastic constants, has

been derived. The calculated linear bulk moduli are found

to be in good agreement with the experiments. The shear

modulus, Young’s modulus, and Poisson’s ratio for ideal

polycrystalline ZrB2 are also calculated and compared with

corresponding experimental values. The shear anisotropic

factors and anisotropy in the linear bulk modulus are

obtained from the single crystal elastic constants. The

Debye temperature is calculated from the average elastic

wave velocity obtained from shear and bulk modulus as

well as the integration of elastic wave velocities in dif-

ferent directions of the single crystal. The calculated elastic

properties are found to be in good agreement with exper-

imental values when the generalized gradient approxima-

tion is used for the exchange and correlation potential. It is

found that the elastic constants and the Debye temperature

of ZrB2 increase monotonically and the anisotropies

weaken with pressure. The thermal properties including the

equation of state, linear compressibility, ductility, and the

heat capacity at various pressures and temperatures are

estimated.

Introduction

Since the discovery of superconductivity at Tc = 39 K in

MgB2, the physical properties of the group IV transition

metal diborides with simple hexagonal AlB2-type structure

have attracted significant interest. The crystal structure of

ZrB2 is designated as AlB2-type transition metal diborides

with the space group symmetry P6/mmm. It is simply a

hexagonal lattice in which close packed TM (transition

metal) layers are present alternative with graphite-like B

layers. Choosing appropriate primitive lattice vectors, the

atoms are positioned at TM (0,0,0), B (1/3, 2/3, 1/2), in the

unit cell. Traditional applications of such materials are

based on their interesting combination of mechanical and

transport properties: high melting temperature, high stiff-

ness, and hardness, high thermal and electrical conductivity

[1]. The knowledge of such basic characteristics as stiff-

ness and thermal expansion coefficient is obviously

important for applications of ZrB2 as a refractory material,

either on its own or as a matrix of a reinforced composite

[2]. Naidyuk et al. [3] investigated electron–phonon inter-

action (EPI) in ZrB2 by point-contact spectroscopy. Fermi

surfaces presented by Shein and Ivanovskii [4] and Rosner

et al. [5]. Vajeeston et al. [6] explained the bonding nature

with DOS (density of state) and charge density plots. Singh

[7] made a theoretical study of EPI in ZrB2 and TaB2.

Recent advances in GaN optoelectronics have seen ZrB2 as

a promising substrate for epitaxial growth of high quality

GaN films [8]. There is very little lattice mismatch between

the two materials (0.63%), and their thermal expansion
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coefficients are also quite similar [1].The knowledge of

elastic and thermal properties of single crystals of ZrB2 is

important for this application. Mahmud et al. [9] and

Milman et al. [10] studied the structural, mechanical, and

elastic behavior, stiffness and thermal expansion coeffi-

cient of ZrB2 by the ab initio density functional method

with the gradient-corrected approximation. The compress-

ibility of a single crystal of ZrB2 was investigated by

Pereira et al. [11].

Elastic properties are also linked thermodynamically to

the specific heat, thermal expansion, Debye temperature,

melting point, and Grüneisen parameter. Plastic properties

of materials are also closely associated with the shear

moduli along the slip planes of mobile dislocations. The

elastic constants determine the response of the crystal to

external forces, as characterized by bulk modulus, shear

modulus, Young’s modulus, and Poisson’s ratio, and

obviously play an important part in determining the

strength of the materials. Values of elastic constants pro-

vide valuable information about the bonding characteristic

between adjacent atomic planes and the anisotropic char-

acter of the bonding and structural stability. It has also been

noticed that there is a correlation between the elastic

constants and the melting temperature of a solid. However,

previous work [8–11] addressed the structural properties

and electronic structure of ZrB2 at zero pressure. It is

known that pressure is an important parameter to tune

physical properties, so it attracts us to investigate the

elastic and electronic properties of ZrB2 under pressure.

There are few investigations on the properties of ZrB2

under high pressure and temperature. In this work, we

investigate elastic properties and thermal properties of

ZrB2 under pressure and temperature using the first-prin-

ciples plane-wave method within the generalized gradient

approximation.

Computational details

The thermal properties and elastic properties calculations

are performed using the pseudo potential plane-wave

method within the framework of the density functional

theory and implemented through the Cambridge Serial

Total Energy Package (CASTEP) Program [12, 13]. This

technique has become widely recognized as the method of

choice for computational solid structural properties inves-

tigations [14]. The thermodynamic properties for ZrB2 are

calculated by the quasi-harmonic Debye model [15]. The

exchange correlation energy is described in the generalized

gradient approximation (GGA) using the Perdew-Burke-

Ernzerhof (PBE) functional [16]. The Zr (4d25s2) and B

(2s2 2p1) states are treated as valence electrons. Interac-

tions of electrons with ion cores are presented by the norm

conserving pseudo potential for all atoms. In all the high

precision calculations, the cutoff energy of the plane-wave

basis set is 270 eV for ZrB2. The special points sampling

integration over the Brillouin zone are carried out using the

Monkhorst-Pack method with a 9 9 9 9 8 special k-point

mesh. The kinetic energy cutoff and mesh of k-points are

optimized by performing self-consistent calculations. The

self-consistent is considered to be converged when the total

energy is 10-6 eV/atom. These parameters are sufficient in

leading to well-converged total energy and elastic stiffness

coefficients calculations.

Results and discussion

Structure properties

The total energy electronic structure calculations are per-

formed over a range of primitive cell volume V from 0.7 V0

to 1.20 V0, in which V0 is the zero pressure equilibrium

primitive cell volume. No constraints are imposed on the

c/a ratio, i.e., the lattice constants a and c are optimized

simultaneously. Since the experimental c/a ratio of ZrB2 is

about 1.120, we calculate a series of different c/a ratios

from 1.110 to 1.142, with a step of 0.004. For each volume,

we determine the corresponding equilibrium ratio c/a of

ZrB2 by performing total energy calculations on a series

of different c/a ratios and minimize the energy as function

of c/a. Through these calculations, we can obtain the

equilibrium parameters a and c and the corresponding

equilibrium ratio c/a of ZrB2 under arbitrary pressures. The

calculated values of DE(=E-E0, E0 = minimum energy)

have been plotted as a function of volume in Fig. 1. We

plot ratios a/a0, c/c0, and V/V0, vary with pressure in Fig. 2

Fig. 1 The energy DE(=E-E0) as a function of the primitive cell

volume of ZrB2. The solid curve is the resulting fit of the Murnaghan

equation of state. Inset c/a ratio versus V
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together with [9]. It shows that our results are slightly

smaller. This may be ascribed to selected different

pseudopotential. It is noted that the most stable structure of

the ZrB2 corresponds to the axial ratio c/a = 1.120, where

a = 3.1768 Å, c = 3.5590 Å, and equilibrium lattice

parameters are listed in Table 1, together with other theo-

retical [4, 6, 9] and experimental [17–19] data. The zero

pressure bulk modulus B0 and the derivative B00of the bulk

modulus with respect to pressure are obtained from the

Birch–Murnaghan equation of state (EOS) [20], and are

also shown in Table 1. It is clear that our results are in

good agreement with the experimental data [11].

We notice in Fig. 1 that, when pressure increases, the

equilibrium ratio c/a ranges from 1.1156 at 20 GPa to

1.1088 at 100 GPa, i.e., decreases by about 0.6%; the

compression along the c-axis is much larger than that along

the a-axis in the basal plane. The changes of Zr–B and B–B

bond distances with the applied pressures are plotted in

Fig. 3. This result is important since to a first approximation

the vibrational frequencies are dependent on bond distances.

As expected experimentally and theoretically, the Zr–B and

B–B bond lengths decrease with pressure. Figure 3 indicates

that the bond length ratios dZr–B/d(Zr–B)0 become steeper

than dB–B/d(B–B)0 as pressure increases, indicating that the

direction along Zr–B is compressed more difficult. These

results agree with Zr–B bonds that determine the lattice

parameter c. Moreover, the atoms in the interlayers become

closer, and the interactions between them become stronger;

contraction of Zr–B and B–B distances under pressure

results in the change of bonding anisotropy of ZrB2 struc-

ture. The interlayer linear compressibility (dlnc/dp = 0.001

36 GPa-1) is about 1.28 times larger than that in the basal

plane (dlna/dln p = 0.001 06 GPa-1), in which B–B bonds

are covalent.

Elastic properties

To calculate the elastic constants under pressure, we have

applied the non-volume-conserving method. The complete

elastic constant tensor was determined from calcula-

tions of the stresses induced by small deformations of the

Fig. 2 The normalized volume V/V0, a/a0, and c/c0 as a function of

pressure at T = 0 where the dark rectangles, circles, and asterisks
represent our obtained V/V0, a/a0, and c/c0, respectively, and the

blank ones are the results from [9]

Table 1 Calculated structure parameters of ZrB2 compared with the experimental and theoretical results at 0 GPa and 0 K

a (Å) c (Å) c/a V (Å3) B0 (GPa) B0 rZr–B rB–B

Present 3.1768 3.5590 1.120 31.11 355 4.2 2.55 1.83

Reference [9] 3.1832 3.5464 1.114 31.12 – – 2.554 1.8378

Reference [6] 3.197 3.561 1.114 31.52 – – 2.564 1.846

Reference [4] 3.1693 3.5313 1.114 30.72 – – – –

Exp [17] 3.170 3.532 1.114 30.74 – – – –

Exp [18] 3.165 3.547 1.120 30.77 – – – –

Exp [19] 3.168 3.523 1.112 – – – – –

Exp [11] – – – – 317 – – –

Exp [1] – – – – 245 – – –

Fig. 3 Variation of the normalized bond length and ratio between the

atoms with pressure
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equilibrium primitive cell, and thus the elastic constants cijkl

are determined as [21]

cijkl ¼
orijðxÞ
oekl

� �
X

ð1Þ

where rij and ekl are the applied stress and Eulerian strain

tensors, and X and x are the coordinates before and after the

deformation. For the isotropic stress, the elastic constants

are defined as [21–23]

cijkl ¼ Cijkl þ
P

2
2dijdkl � dildjk � dikdjl

� �
ð2Þ

Cijkl ¼
1

VðxÞ
o2EðxÞ
oeijoekl

� �
X

ð3Þ

where Cijkl are the second-order derivatives with respect to

the infinitesimal strain. For hexagonal crystals, there are

five independent elastic constants. In Table 2, we list the

elastic constants of ZrB2 at 0 K and 0 GPa. It is shown that

our results are consistent with the experimental data [1] and

other theoretical data [9]. The mechanical anisotropy of

ZrB2 can be calculated using the bulk moduli along the a

and c axes, Ba and Bc, respectively, defined as [24]

Ba ¼ a
dP

da
¼ K

2þ a
; ð4Þ

Bc ¼ c
dP

dc
¼ Ba

a
; ð5Þ

K ¼ 2ðC11 þ C12Þ þ 4C13aþ C33a
2; ð6Þ

a ¼ C11 þ C12 � 2C13

C33 � C13

: ð7Þ

The calculated Ba and Bc at zero pressure are also presented

in Table 2, together with results of others. The ratio Ba/Bc

of ZrB2 is 1.20 (1.43 for NbB2 [24, 25], 1.54 for TiB2 [26],

1.42 for VB2 [9], 0.98 [9], and 1.22 [1] for ZrB2), which is

in agreement with the experiment value of 1.22 presented

by Okamoto et al. The ratio Ba/Bc of ZrB2 is smaller than

NbB2, TiB2, and VB2, indicating the stronger chemical

bonding for ZrB2. The bulk moduli Ba and Bc are also

presented in Fig. 4. The ratio of Ba/Bc has a trend of

gradual decline as the pressure increases. It is shown that the

mechanical behavior of ZrB2 under zero pressure is of

anisotropy. With the applied pressure increasing, the anisot-

ropy will gradually weaken.

The obtained values of C11, C12, C13, C33, and C44 at

zero temperature versus pressure (up to 100 GPa) are

shown in Fig. 5. We found that the five independent elastic

constants increase monotonically with pressure. C11 and

C33 vary rapidly as pressure increases, and C44 becomes

moderate as well as C13. However, C12 increases compar-

atively slowly with pressure. Unfortunately, there are no

experimental and theoretical data to compare our elastic

constants under pressure. If this structure is stable, the five

independent elastic constants should satisfy the well-

known Born stability criteria [27], i.e.,

Table 2 Elastic constants Cij (GPa) and the bulk moduli Ba and Bc

(GPa) at 0 GPa and 0 K

C11 C12 C13 C33 C44 Ba Bc

Present ZrB2 534 55 110 418 244 720 602

Reference [9] VB2 699 146 109 552 167 999 706

Reference [9] ZrB2 596 48 169 482 240 809 828

Reference [23, 24] NbB2 517 95 120 528 122 797 557

Exp [1] ZrB2 568 57 121 436 248 772 635

Exp [25] TiB2 660 48 93 432 260 851 553

Fig. 4 Variation of the bulk modulus Ba and Bc along the a- and

c-axes with pressure

Fig. 5 The elastic constants Cij of ZrB2 as a function of pressure
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C12 [ 0; C33 [ 0; C66 ¼ ðC11 � C12Þ=2 [ 0; C44 [ 0;

ð8Þ

and

ðC11 þ C12ÞC33 � 2C2
13 [ 0: ð9Þ

It can be seen that our calculated elastic constants Cij sat-

isfy the Born stability criteria. This suggests that the hex-

agonal phase of ZrB2 is mechanically stable and predicts

that there is not a transition phase when the pressure is

under 100 GPa.

The Voigt [28] and Reuss [29] assumptions result in the

theoretical maximum and minimum values of the isotropic

elastic modulus, respectively. For hexagonal ZrB2, the

Voigt (BV) and Reuss (BR) bulk moduli are given by

BV ¼
1

9
2ðC11 þ C12Þ þ C33 þ 4C13½ �; ð10Þ

BR ¼
ðC11 þ C12ÞC33 � 2C2

13

C11 þ C12 þ 2C33 � 4C13

: ð11Þ

Similarly, the upper and the lower bounds for the shear

modulus of polycrystalline ZrB2 aggregate according to

Voigt and Reuss approximations are given by

GV ¼
1

30
C11 þ C12 þ 2C33 � 4C13 þ 12C44 þ 12C66ð Þ

ð12Þ

GR ¼
5

2

ðC11þC12ÞC33� 2C2
13Þ

� �2
C44C66

3BVC44C66þ ðC11þC12ÞC33� 2C2
13Þ

� �2ðC44þC66Þ
ð13Þ

where C66 ¼ 1
2
ðC11 � C12Þ:

The arithmetic average of the Voigt and the Reuss

bounds is called the Voigt–Reuss–Hill (VRH) average [30]

and is commonly used to estimate elastic moduli of poly-

crystals. The VRH averages for shear modulus (G) and

bulk modulus (B) are

G ¼ GR þ GV

2
; B ¼ BR þ BV

2
: ð14Þ

The polycrystalline elastic modulus (E) and the Poisson

ratio (r) are then computed from these values using the

following relationship [30]:

E ¼ 9BG

3Bþ G
; r ¼ 3B� 2G

2ð3Bþ GÞ: ð15Þ

It is suggested that the bulk modulus, B, can be used as a

measure to describe the average atomic bond strength

because it has a strong correlation with the cohesive energy

or bonding energy of atoms in crystals [31]. The hardness

of materials can be related to their elastic moduli, such as

the Yong’s modulus, E, and the shear modulus, G [32].

Although the relationships between hardness and the

moduli are not identical for different materials, the general

trend is, the larger the moduli, the harder the materials.

Table 3 lists the calculated polycrystalline elastic modulus,

bulk modulus, and the Poisson ratio of ZrB2 in this study.

Therefore, elevating pressure can increase the materials

hardness.

The investigation of the elastic properties can be com-

pleted by providing the Poisson’s ratio, which quantifies the

stability of the crystal against shear. The ratio can formally

takes values between -1 and 0.5, which corresponds,

respectively, to the lower limit where the material does not

change its shape, and to the upper limit when the volume

remains unchanged. All the calculated Poisson’s ratios in

Table 3 are close to the value of 0.15 at lower pressure, and

vary to the value of 0.25 at higher pressure which means the

central interatomic forces under higher pressure [33].

Elastic anisotropies and brittleness

Most of the crystals exhibit elastic anisotropies of varying

degree and there have been different ways to represent the

elastic anisotropy of crystals. The compression and the

shear anisotropic factors provide measures of the degrees

of anisotropy in atomic bonding in different crystallo-

graphic planes. For a transversely isotropic material (hex-

agonal), the anisotropies in compressibility and in shear are

given by [34]

Acomp ¼
S33 þ 2S13

S11 þ S12 þ S13

; Ashear ¼
2C44

C11 � C12

ð16Þ

where Sij are elastic compliance constants.

A value of unity means that the crystal exhibits isotropic

properties and values other than unity represent varying

degree of anisotropy. Another way of measuring the elastic

anisotropy is given by the percentage of anisotropy in the

compression and shear [35]. They are defined as

Acomp ¼
BV � BR

BV þ BR

� 100%; Ashear ¼
GV � GR

GV þ GR

� 100%:

ð17Þ

These values can range from zero (isotropic) to one rep-

resenting the maximum anisotropy. The calculated anisot-

ropy values of Acomp, Ashear, Acomp(%), and Ashear(%) are

1.21, 1.02, 0.21%, and 1.28%, respectively. It can be seen

that the anisotropy both in shear and compression is little.

We notice that the anisotropy factor A (= C11/C33) is 1.27

for VB2. The corresponding value for ZrB2 is 1.29, which

is in very good agreement with the observed value of 1.3

[1]. Although this anisotropy factor is by no means suffi-

cient to confirm the anisotropy of the system, our results do

indicate a smaller anisotropy than even TiB2 (1.53) [26].

Of the five elastic constants, the values of C12 and C13 are

notably small, indicating the brittleness of the boride.

5622 J Mater Sci (2009) 44:5618–5626
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Anisotropic parameters (C13/C12, C44/C66, and C33/C11) are

plotted in Fig. 6 as a function of pressure. Both the large

C13/C12 and small C33/C11 values indicate that atomic

bonding along the a-axis is stronger than that along the

c-axis, being consistent with the fact that the crystal struc-

ture of ZrB2 is a layered-type with respect to the c-axis.

Pugh [36] introduced the quotient of bulk to shear mod-

ulus (G/B) of polycrystalline phases by considering that the

shear modulus G represents the resistance to plastic

deformation, while the bulk modulus B represents the

resistance to fracture. A high (low) G/B value is associated

with brittleness (ductility). The critical value which sepa-

rates ductile and brittle materials is about 0.57. It is inter-

esting to try to understand the microscopic origin of this

empirical parameter. This was recently demonstrated in the

study of brittle versus ductile transition in intermetallic

compounds from first principles calculations [37]. All the

calculated values of the G/B ([0.57) decrease with pressures

which means that pressure can improve ductility (Fig. 7).

Table 3 The shear modulus G (GPa), bulk modulus B (GPa), and Poission ratio r at various pressures

P (GPa) BV BR BH GV GR GH G B E r

0 226 225 225 226 220 223 223 225 504 0.12797

5 245 244 245 239 233 236 236 245 536 0.13492

10 263 262 262 250 243 246 246 262 563 0.14201

15 282 281 282 262 255 258 258 282 594 0.14858

20 299 298 298 273 264 268 268 298 620 0.15398

25 320 319 319 285 275 280 280 319 651 0.16072

30 331 330 331 292 281 286 286 331 667 0.16404

35 354 353 354 305 293 299 299 354 700 0.17008

40 369 368 368 312 300 306 306 368 720 0.17443

45 387 387 387 324 311 318 318 387 749 0.17768

50 404 403 404 333 318 325 325 404 770 0.18232

55 417 417 417 341 325 333 333 417 790 0.1844

60 434 433 434 349 332 341 341 434 810 0.18862

65 448 448 448 357 339 348 348 448 830 0.19144

70 475 475 475 372 352 362 362 475 867 0.19608

75 486 485 486 375 355 365 365 486 876 0.19927

80 505 505 505 386 367 377 377 505 906 0.20146

85 517 516 517 391 369 380 380 517 916 0.20466

90 532 532 532 398 374 386 386 532 933 0.20784

95 545 545 545 403 379 391 391 545 947 0.21075

100 568 568 568 417 390 404 404 568 979 0.2127

Fig. 6 Anisotropic parameters (C13/C12, C44/C66, and C33/C11)

plotted as a function of pressure Fig. 7 The calculated ratio of G/B plotted as a function of pressure
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Thermodynamic properties

To investigate the thermodynamic properties of ZrB2, we

apply the quasi-harmonic Debye model, in which the non-

equilibrium Gibbs function G*(V; P,T) can be written in the

form of [15, 38–41]

G�ðV; P; TÞ ¼ EðVÞ þ PV þ AVibðhðVÞ; TÞ ð18Þ

where E(V) is the total energy per unit cell, PV corre-

sponds to the constant hydrostatic pressure condition, and

AVib(h(V);T) is the vibrational term, which can be written as

AVibðhðVÞ; TÞ ¼ nKT
9h
8T
þ 3 ln 1� e�

h
T

� �
� D

h
T

� �	 


ð19Þ

where n is the number of atoms in unit cell, and the Debye

integral D(h/T) is defined as [15]

D
h
T

� �
¼ 3

h
T

� �3

Zh
T

0

x3

ex � 1
dx: ð20Þ

The heat capacity CV and the thermal expansion (a) are

expressed as

CV ¼ 3nK 4Dðh=TÞ � 3h=T

eh=T � 1

	 

; ð21Þ

a ¼ cCV

BTV
; ð22Þ

where c is the Grüneisen parameter defined as

c ¼ �d ln hðVÞ
d ln V

: ð23Þ

One of the standard methods of calculating the Debye

temperature, h in Eq. 23, is from elastic constant. It is

related to an average sound velocity, since the vibrations of

the solid are considered as elastic waves in Debye’s theory.

For ZrB2 crystal, the Debye temperature can be estimated

from the average sound velocity vm, using the following

equation [42]

h ¼ h

kB

3nNAq
4pM

� �1=3

vm ð24Þ

where h is Planck’s constant, kB is Boltzmann’s constant,

NA is Avogadro’s number, M is the molecule mass, q is the

density, and the average sound velocity vm is approxi-

mately given by [43]

vm ¼
1

3

2

v3
s

þ 1

v3
P

� �	 
�1
3

ð25Þ

where vp and vs are the longitudinal and transverse elastic

wave velocities, respectively, which can be obtained from

Navier’s equation [42]

vP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bs þ

4

3
G

� �
=q

s
; vs ¼

ffiffiffiffiffiffiffiffiffi
G=q

p
ð26Þ

where G is the shear modulus and Bs is the adiabatic bulk

modulus.

In Fig. 8, we show the heat capacity CV and the Debye

temperature h as a function of pressure P at the tempera-

tures of 300 and 800 K for ZrB2. It is shown that when the

temperature is constant, the Debye temperature h increases

non-linearly with applied pressures, indicating the change

of the vibration frequency of atoms under pressure. How-

ever, the heat capacity CV decreases with the applied

pressures, in which the increasing pressure might achieve

the same result with decreasing temperature on ZrB2.

The relationship between bulk modulus B and pressure P

at different temperature T = 300, 900, and 1900 K are

shown in Fig. 9. These results indicate that B increases with

P at a given temperature and decreases with T at a given

pressure.

Linear compressibility

The pressure dependence of the lattice parameter is also

related to a combination of elastic constants, and thus we

can make use of the linear compressibility k to check the

validity of the calculated Sij. In hexagonal crystal, the axial

compressibilities ka and kc are of the form [44]

ka ¼ � d lna=dP ¼ S11 þ S12 þ S13; kc ¼ � d lnc=dP

¼ S13 þ S23 þ S33: ð27Þ

Here the ka and kc reflect the anisotropy of the linear

compressibility. On the other hand, we can determine ka

Fig. 8 Variations of thermodynamic parameters X (X Debye tem-

perature or specific heat) with pressure P. They are normalized by

(X - X0)/X0, where X and X0 are the Debye temperature or heat

capacity under any pressure P and zero pressure P0 at the temperatures

of 300 and 800 K
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and kc by fitting a polynomial to the evolution of lna and

lnc at various pressures. Thus we could examine the con-

sistency between the ka and kc derived from the strained

lattice parameters and those derived from the calculated Sij

values. The pressure effects on the axial compressibilities

ka and kc are shown in Fig. 10. The axial ka and kc decrease

with increasing pressure but the rate of kc is little bigger

than ka. This means that the B–B bonds are covalent and

stronger than Zr–B bonds. When pressure exceeds

100 GPa, the axial compressibilities ka and kc nearly

approach the same result (0.6 TPa-1).

Conclusions

In this work, we have used the plane-wave pseudopotential

density functional theory within the generalized gradient

approximation (GGA) method to perform a set of first

principles, self-consistent, total energy calculations to

determine the equations of state, and equilibrium structural

parameters of ZrB2in the HCP C32 structure. The calcu-

lated lattice constants are in excellent agreement with the

experimental data when we use the GGA for the exchange

and correlation potential. We have obtained the pressure

dependence of structural parameters a, c, c/a, V, and d (the

distance of Zr–B, B–B) through performing total energy

calculations over a range of the primitive cell volumes. The

results are in agreement with other theoretical data. We

also calculated the strain energies for five different dis-

tortions of ZrB2 using GGA in the theoretically optimized

crystal structure in order to calculate elastic constants.

Overall the elastic constants obtained from the GGA cal-

culations are found to be somewhat in better agreement

with the experimental values. From the elastic constants,

the bulk moduli along the crystallographic axes are cal-

culated and are compared with experimental values. The

comparison of directional dependent bulk modulus and

Young’s modulus obtained from the GGA calculations

with experimental results shows that the GGA considerably

improves the elastic properties of ZrB2. Using Hill’s

approximation, the ideal polycrystalline aggregates bulk

modulus, shear modulus, Young’s modulus, and Poisson’s

ratio, are calculated. The Poisson’s ratio of ZrB2 was found

to be lower than that of ordinary metals and alloys and this

shows clear deviations from central forces in this material.

We also discussed the chemical bonding in ZrB2 through

the angular momentum and elastic anisotropy of this

material. From the theoretically obtained polycrystalline

shear moduli and bulk moduli as well as the average elastic

wave velocity over different directions, the Debye tem-

perature was calculated and found to be in good agreement

with other theoretical values. The pressure dependences of

elastic constants and heat capacity are also obtained. It

shows that pressure can improve ductility of ZrB2. It is

found that the elastic constants and the Debye temperature

increase monotonically, and the anisotropy and linear

compressibility are weakened with pressure.
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